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Abstract—There has been a lot of research done towards both
camera and Wi-Fi tracking respectively, both these techniques
have their benefits and drawbacks. By combining these tech-
nologies it is possible to eliminate their respective weaknesses,
to increase the possibilities of the system as a whole. This is
accomplished by fusing the sensor data from Wi-Fi and camera
before inserting it in a particle filter. This will result in a more
accurate and robust localization system.

I. INTRODUCTION

The need for localization is increasing and so is the range of
possibilities. The increasing availability of mobile applications
and social networking has made the hunger for localization
greater, as well as the possible solutions. There are multiple
ways to track people in a building environment. Some are
very accurate like ultra-wide band [1], while others require no
additional infrastructure [2, p. 24]. But there is not one ideal
technology, there is always a drawback when using a certain
technology [3, p. 72]. By combining these technologies we can
try to remove the negative aspects of each individual method
and augment its strengths. This paper proposes an algorithm
that combines Wi-Fi localization and static camera tracking.

The main goal is by combining Wi-Fi fingerprint local-
ization and camera tracking, to increase the accuracy and
reliability of the overall system. A static camera is more
accurate than Wi-Fi localization, but has blind spots, suffers
from occlusion and it is difficult to perform identification. Wi-
Fi localization is accurate up to room level [3], but requires
users to carry a Wi-Fi capable device, this also means that
identification is inherent in this form of localization. That
means that Wi-Fi alone cannot locate anybody who does not
want to be tracked, i.e. does not enable his or hers Wi-Fi
device.

The purpose of fusing Wi-Fi and video data is to have
a smaller localization error in the rooms where there is a
camera, in contrast to only Wi-Fi, but still offer room level
localization where there are no cameras. This paper will rather
focus on preparing the captured images and fusing that data
with the Wi-Fi data, than on the localization algorithm and Wi-
Fi data. The Localization algorithm using Wi-Fi is the same
as described in [2].

The preparation of the vision aspect is defined as isolating
human figures in the image, modeling those locations in the
image as a Gaussian mixture model [4] on a floor plan. Fusion

of camera and Wi-Fi will encompass the way the probabilities
of both methods are combined to get the most accurate yet
still robust tracking.

II. METHODS

A. Particle Filter

A particle filter [5] is able to cope with the multi-modal
nature of the problem of locating a person in a complex
environment. An added benefit of using a particle filter is that
we can alter the measurement model as desired, so we can have
different measurement models depending on what kind of data
is available. To properly scan all the channels for Service Set
Identifier (SSID) and signal strength a certain amount of time
is needed, while a camera updates multiple times per second.
This results in data arriving asynchronous. In case of a high
server load it is possible that several frames of image data are
ignored.

The main components in a particle filter are the motion
model, measurement model and resampling [2], [6]. The
motion model generally consists of rules that govern how the
particles can move, these rules are usually modeled to reflect
the real world. It is possible to move the particles randomly
but it is more efficient to move particles as the tracked object
would.

The measurement model describes how the measurements
from the world are used to assign a weight to particles. The
higher the weight of a particle, the more ‘correct’ we estimate
that particle to be. The sum of all particle weights need to be
1, so that the collection of particles can be called a posterior
density function.

The resampling step describes how particles are repositioned
between frames. Particles with low weights are removed, while
particles with high weights are duplicated. This results in a
higher particle density in areas with high probability, since
those are the areas that are the most interesting to monitor.

B. Measurement

Both measurements are fundamentally different: where the
Wi-Fi measurement compares the signal strength of the client
(a tag, smartphone, netbook, etc.) to a database of signal
strengths, camera tracking involves detecting an object as it
moves through the environment. This means that Wi-Fi does
not have problems with identification, since only the object



that is being tracked can transmit the data relevant to its
localization and by doing so automatically identifies itself.
Identification might be easy for Wi-Fi localization, it cannot
track an object that does not give its Wi-Fi signal strength.

Camera tracking has much more difficulties to identify what
it is tracking, it is not inherent as with Wi-Fi. However it is
possible to detect all other objects in the viewplane, so that
it is possible to track the people who are not being tracked
with Wi-Fi or to increase the accuracy by combining the two
measurements.

C. Wi-Fi

The measurement model of [2] is used. It uses pattern
matching, here the difference feature vector of the received
signal strengths (RSS) from multiple Wi-Fi-access points. The
fingerprint data and the measurement taken by a client are
compared, using the kernel method. Penalties are added if
access points are missing from the measurement data or if
extra access points are found in the measurement data. If an
access point is visible at the location of the tag or device but
is not represented in the fingerprint of a certain location, then
we assume that the fit between measurement and fingerprint
is less accurate. The same logic applies when there is an
access point missing in the measurement that is saved in the
fingerprint. This is implemented by adding a penalty to the
weight, respective to either the RSS of the extra signal or the
expected RSS value.

Because fingerprint matching relies on a database with RSS
values from the area wherein the tracking will occur, it is
necessary to measure those RSS values at certain intervals in
space. This is a drawback, because it requires some manual
labor, but is preferred to methods like time of flight, because it
does not require that the location of access points are known.

D. Vision system

This section will describe the processing of the video frames
undergo before the data is fused together which illustrated
by Figure 1. First the foreground segmentation is described,
followed by how human shapes are extracted and finally
mapped to a floor plan.

1) Background Subtraction: Because of the static camera
position, a good point to start detecting people is background
subtraction. In its most basic form background subtraction
(BGS) takes an image of a room with only background objects,
then it uses the absolute difference between the background
image and the current video frame, this is called image
differencing. After thresholding this will result in a mask
which segments the foreground objects from the background.

However backgrounds are not static. Changes in lighting
and objects being moved, like chairs and tables, can render
the background image outdated and useless. To combat this
it is necessary to update the background image at a specific
learning rate. This results in a trade-off between coping
with fast changing environment factors, such as lighting, and
preventing temporarily stationary foreground objects to be
absorbed in the background.

An approach that differs from the image differencing in the
way that it does not use a single image as background model, is
Mixture of Gaussians, which is displayed in Figure 1(b). Here
a pixel in the background model is represented by Gaussian
kernels at a certain color vector, in this case the RGB color
value. Because a pixel can consist of multiple Gaussians, this
method can accurately model regions where the background
image changes over time between a couple of color vectors,
such as a tree branch moving in the wind. a pixel from the
current frame is compared to that pixel in the background
model, which is a certain amount of Gaussian kernels. If it
lies within a certain threshold of a Gaussian it is classified as
background. If the pixel that is being compared falls outside
all Gaussians it is classified as foreground model and the
background model is updated. [4]

The resulting image is called a foreground mask, it is
basically a binary map of pixels which are deemed to be of
a foreground object. This mask will consist of all objects that
are not stationary. This also includes things like chairs that
have recently been moved. Since the goal is to track human
beings we try to eliminate these false positives. Generally
a person will appear as a tall blob in the foreground mask,
thus by focusing on these shapes we can reduce the impact
of objects like moved furniture. Figure 1(b) shows the result
from a mixture of Gaussians BGS.

2) Human filtering: A person in three dimensional space
will occupy a cuboid, when projected onto a two dimensional
plane, like an image, that person will occupy a rectangle in the
image. The image is filtered by a box-filter with the width and
height of the rectangle a person would occupy in the image.
The difference is that the filter is not centered around its origin
point. The origin point is located at the bottom of the structure
element, this focuses the most intensity at the bottom of the
blob as described by Van Hese et al. [7]. An added constraint
is that the pixel value at the origin point of the structuring
element, has to be higher than a certain threshold. This is
done to prevent the filter from returning high values below the
detected blob. As a person gets closer to the camera, the region
he occupies will get larger as well. This is taken into account
by defining two sizes of filter, one at the furthest region in the
image and one size for the nearest region, for the rest of the
image the size is interpolated between the large en the small
size.

At this stage the foreground mask will consist solely of the
lowest region of tall blobs, which we assume are the feet of
people in the room. The reason why the lowest region is the
most interesting is because that is the most accurate way of
transforming the location in the camera image to a location on
a map of the room. The transformation from camera to floor
plan would cast ‘shadows’, bright areas on a map as a result
of the projection onto the floor plan.

3) Gaussian modeling: To further prevent this projection
effect, and reduce the consumed bandwidth, the filtered fore-
ground mask is described using Gaussian kernels. The kernels
that are used are circular 2D Gaussian functions. To model
a binary image with Gaussian functions, we make some
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Fig. 1. The steps of the visual preprocessing. (a) the original image. (b) The foreground mask returned by the background subtraction. (c) Human filtering
applied to the foreground mask.(d) The Gaussian kernel of the blob in image (c) mapped to the floor plan.

assumptions and cut corners. For instance, a binary image is
not desired when using a particle filter, a more beneficial shape
is in fact a Gaussian curve, a peak with a gentle slope.

With that in mind it is justified to inaccurately model the
binary image with Gaussian functions. Secondly, by choosing
circular Gaussian functions we can further reduce the ‘shadow’
effect created by projecting the image. By modeling the
foreground mask before it is fitted to the floor plan, we
can maintain the circular nature of the blobs. The image is
modeled by Gaussian curves with coordinates x and y and a
σ parameters, only its coordinates are completely transformed
while the standard deviation is scaled accordingly, resulting in
circular Gaussian functions on the floor plan as seen in Figure
1 (d), which is what is desired.

A method for finding Gaussian distributions in data is
Expectation Maximization algorithm [8]. Here a number of
Gaussian distributions are mapped to the data. The drawback
of this is that the number of separate clusters has to be known,
this is not feasible in this setup. Thus a separate algorithm is
devised as shown in Algorithm 1.

The proposed algorithm starts from a binary image, where
for every white pixel a Gaussian kernel, with a standard
deviation, is added to an array of Gaussian kernels. Then every
kernel in that list is compared against every other kernel. If
two kernels are not c-separated [9] the kernels are combined,
meaning their location is averaged and standard deviation is
convoluted according to equation 1. This is done until no new
combinations are made. This method is illustrated in Figure
2.
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This algorithm gives Gaussian functions located at places
with a high probability of having a person there. The formula
of a two dimensional circular Gaussian curve is as shown in
Equation 2, with σ = σx = σy . The normalizing constant

1√
2πσ2

is there to insure that the integral of the curve is one,
it causes the intensity of the peak to decline as the standard
deviation gets larger. Large blobs in the image make for large
standard deviations in the gauss kernel that represents it, but
the larger the blob, the larger the probability of a person

Algorithm 1 Mapping Gauss curves to blobs in an image
for all pixelvalues ≥ threshold do
GaussList← newgaussKernel {pixelcoord, defaul σ}

end for
unstable = true
while unstable do

for all gaussKernelsinGaussList do
for all OthergaussKernel inGaussList do
Distance = ‖gaussKernel −
OthergaussKernel‖
Totalσ = gausskernel.σ +Othergausskernel.σ
if distance ≤ Totalσ then
Combine(gaussKernel, OthergaussKernel)
not stable = true

end if
end for

end for
if noCombinationsOccured then
unstable = false

end if
end while

being there. Therefore we can disregard the normalizing
constant, knowing that the particle filter normalizes itself after
measurement.

III. FUSION

Combining the data from Wi-Fi and video is an important
step, here it is attempted to increase the amount of valuable
information. The benefit of fusing these two measurements
is that Wi-Fi is data that only refers to the client while the
camera image has data that refers to all persons in its view. A
camera provides a submeter accurate location but Wi-Fi only
has a zone [3]. However the camera has blind spots, is not
located in every room, and because of the adaptive background
subtraction a stationary person will eventually be absorbed in
the background. Therefore it is critical to determine what the
state of the sensors are.

Wi-Fi as only sensor can be used as a measurement and will
locate a person up to room level, but since this vision system’s
measurement has no concept of identification it is ill advised
to use it as measurement on its own. There would be no way
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Fig. 2. The results of Gaussian modeling. (a) a test image with white blobs with increasing size. (b) The resulting image from the human filtering. notice that
the blob in the center is about the same size as the blob on the left, despite their difference in size in the original image. (c) Initial state of Gauss modeling
algorithm. (d) The third iteration of the algorithm. ?? Eight and in this case final iteration

to determine that the correct person has been located. Because
the nature of the transmitted data from a camera server, there
is either current sensor data or there is not, it is possible to
decide in real-time which variation of measurement model to
use. In the case where only Wi-Fi data is received, obviously
only the measurement model for Wi-Fi is used.

When both Wi-Fi and camera data are available, then the
two measurements are combined with a naive Bayesian with
a confidence measure 3. After this occurrence the same Wi-Fi
measurement is repeated when newer camera data is available.
Initially, the confidence measure α for the Wi-Fi measurement
is one, i.e. very confident since the measurement has just been
taken. As the Wi-Fi data becomes older the confidence in that
measurement decreases, so that eventually when α is zero, the
entire probability, P (Wi-Fi|loc) is reduced to 1, and effec-
tively removed from the equation. Similarly, the confidence
measure β is determined by the amount and distribution of
kernels, where β will be closer to one when there are fewer
kernels and these are bunched close together, and closer to
zero when there are a lot of kernels that are spread over a
larger area.

P (loc|Wi-Fi, cam) = α ∗ P (Wi-Fi|loc)α ∗ P (Cam|loc)β
(3)

IV. RESULT

The resulting data are compared to the ground truth, and
differences in measurement models as to compare the perfor-
mance of Wi-Fi alone, camera alone and the both combined.
The resulting 2 dimensional error is represented as a cumula-
tive distribution function (CDF) shown in Figure 3. This allows
for fast analysis of both the accuracy and precision.

The conditions that were tested included a person with a
Wi-Fi client moving around in the test area alone with no
interference, this situation is represented by Figure 3(a). Other
conditions include a stationary Wi-Fi client while a person
walks around, and a cluttered scene where one Wi-Fi client
and several others walk in the test area. This is shown in Figure
3(b), displaying no significant increase in accuracy to Wi-Fi,
but the location error is seldom worse than Wi-Fi alone.

V. CONCLUSION

The results indicate that by combining the two measure-
ments the accuracy can be increased while never dipping
below the best accuracy the of a single measurement.

(a)

(b)

Fig. 3. (a) The cummulative distribution function of the user walking around
the test area without interference.(b) all other situations
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